Conservation of the C.elegans tra-2 3'UTR translational control.
نویسندگان
چکیده
The Caenorhabditis elegans sex-determination gene, tra-2, is translationally regulated by two 28 nt elements (DREs) located in the 3'UTR that bind a factor called DRF. This regulation requires the laf-1 gene activity. We demonstrate that the nematode Caenorhabditis briggsae tra-2 gene and the human oncogene GLI are translationally regulated by elements that are functionally equivalent to DREs. Here, we rename the DREs to TGEs (tra-2 and GLI elements). Similarly to the C.elegans tra-2 TGEs, the C.briggsae tra-2 and GLI TGEs repress translation of a reporter transgene in a laf-1 dependent manner. Furthermore, they regulate poly(A) tail length and bind DRF. We also find that the C.elegans TGEs control translation and poly(A) tail length in C.briggsae and rodent cells. Moreover, these same organisms contain a factor that specifically associates with the C.elegans TGEs. These findings are consistent with the TGE control being present in C.briggsae and rodent cells. Three lines of evidence indicate that C.briggsae tra-2 and GLI are translationally controlled in vivo by TGEs. First, like C.elegans tra-2 TGEs, the C.briggsae tra-2 and GLI TGEs control translation and poly(A) tail lengths in C.briggsae and rodent cells, respectively. Second, the same factor in C.briggsae and mammalian cells that binds to the C.elegans tra-2 TGEs binds the C.briggsae tra-2 and GLI TGEs. Third, deletion of the GLI TGE increases GLI's ability to transform cells. These findings suggest that TGE control is conserved and regulates the expression of other mRNAs.
منابع مشابه
A genetic pathway for regulation of tra-2 translation.
In Caenorhabditis elegans, the tra-2 sex-determining gene is regulated at the translational level by two 28 nt direct repeat elements (DREs) located in its 3' untranslated region (3'UTR). DRF is a factor that binds the DREs and may be a trans-acting translational regulator of tra-2. Here we identify two genes that are required for the normal pattern of translational control. A newly identified ...
متن کاملRapid deadenylation and Poly(A)-dependent translational repression mediated by the Caenorhabditis elegans tra-2 3' untranslated region in Xenopus embryos.
The 3' untranslated region (3'UTR) of many eukaryotic mRNAs is essential for their control during early development. Negative translational control elements in 3'UTRs regulate pattern formation, cell fate, and sex determination in a variety of organisms. tra-2 mRNA in Caenorhabditis elegans is required for female development but must be repressed to permit spermatogenesis in hermaphrodites. Tra...
متن کاملRegulatory elements required for development of caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species.
The Caenorhabditis elegans hermaphrodite is essentially a female that produces sperm. In C. elegans, tra-2 promotes female fates and must be repressed to achieve hermaphrodite spermatogenesis. In an effort to learn how mating systems evolve, we have cloned tra-2 from C. remanei, the closest gonochoristic relative of C. elegans. We found its structure to be similar to that of Ce-tra-2 but its se...
متن کاملMicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملCharacterization of the Role of the Fem Genes in the Sex Determination Pathway of Caenorhabditis Briggsae
Title of Dissertation CHARACTERIZATION OF THE ROLE OF THE FEM GENES IN THE SEX DETERMINATION PATHWAY OF CAENORHABDITIS BRIGGSAE Robin Cook Hill, Doctor of Philosophy, 2008 Directed by: Professor Eric Haag Department of Biology In the genus Caenorhabditis, self-fertile hermaphrodites in C.elegans and C.briggsae evolved from females by developing the ability to generate a limited number of self s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 16 20 شماره
صفحات -
تاریخ انتشار 1997